Features

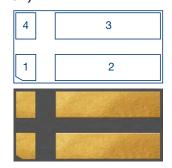
- Ultra-low Q_G For High Efficiency
- Logic Level
- Light Weight 0.160 grams
- Low R_{DS(on)}
- Compact Hermetic Package
- Source Sense Pin
- Total Ionizing Dose LDR and HDR Immune
- Single Event Effect (SEE) Hardened
 - SEE immunity up to LET of 37 MeV/(mg/cm²) in Si with V_{DS} up to 80% of rated Breakdown
- Neutron
 - Maintains Pre-Rad specification for up to 3 x 10¹⁵ Neutrons/cm²

Applications

- High power density DC-DC converters
- Isolated power supplies
- · Class-D amplifiers
- Low inductance motor drive

Symbol	Parameter-Conditions	Units		
$R_{\Theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 3)	48	°C/W	
R _{eJC}	Thermal Resistance, Junction-to-Case		C/VV	

EPCS9001DSH


eGaN[®] FET in a Surface Mount (FSMD-D) 100 V, 90 A, 2.2 m Ω

Description

EPC Space FSMD-D series of eGaN® power switching HEMTs have been specifically designed for critical applications in the high reliability or commercial satellite space environments. These devices have exceptionally high electron mobility and a low temperature coefficient resulting in very low $R_{DS(on)}$ values. The lateral structure of the die provides for very low gate charge (Q_G) and extremely fast switching times. These features enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies and more compact packaging.

I/O Pin Assignment (Bottom View)

Pin	Symbol	Description
1	G	Gate
2	D	Drain
3	S	Source
4	SS	Source Sense

Absolute Maximum Rating ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter-Conditions	Value	Units		
V _{DS}	Drain-to-Source Voltage (Note 1)	100	V		
I _D	Continuous (T _A = 25°C)	90			
I _{DM}	Single-Pulse Drain Current T _{pulse} ≤ 80 µs	390	А		
V _{GS}	Gate-to-Source Voltage (Note 2)	6 / -4	V		
T_J, T_{STG}	Operating and Storage Junction Temperature Range -55 to 150		°C		
T _{sol}	Package Mounting Surface Temperature	260			

Static Characteristics (Typical (TYP) values are for reference only.)

Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
B _{VDSS}	Drain-to-Source Voltage	$V_{GS} = 0 V$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$		20	200	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 6 \text{ V}, T_{J} = 25^{\circ}\text{C}$		0.02	4	mA
IGSS	Gate-to-Source Forward Leakage	$V_{GS} = 6 \text{ V}, T_J = 125^{\circ}\text{C}$		0.1	9	mA
I _{GSSR}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		20	200	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 14 \text{ mA}$	0.7	1.2	2.5	V
R _{DS(on)}	Drain-Source On Resistance (Note 4)	$V_{GS} = 5 \text{ V}, I_D = 90 \text{ A}$		1.8	2.2	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_{S} = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.5		V

Dynamic Characteristics ($T_C = 25$ °C unless otherwise noted. Typical (TYP) values are for reference only.)

Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
C _{ISS}	Input Capacitance			1610	1940	
C _{RSS}	Reverse transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		15		pF
C _{oss}	Output Capacitance			1100	1650	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 5)	$V_{DS} = 0 \text{ to } 50 \text{ V},$		1450		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 6)	$V_{GS} = 0 V$		1790		
R _G	Gate Resistance (Note 7)			0.3		Ω
Q_{G}	Total Gate Charge (Note 8)	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 50 \text{ A}$		15	19	
Q _{GS}	Gate to Source Charge (Note 8)	V _{DS} = 50 V, I _D = 50 A		4.1		nC
Q_{GD}	Gate to Drain Charge (Note 8)			3		
Q _{G(TH)}	Gate Charge at Threshold (Note 7)			2.7		
Q _{OSS}	Output Charge (Note 7)	$V_{DS} = 50 \text{ V}, \ V_{GS} = 0 \text{ V}$		72	108	
Q _{RR}	Source to Drain Recovery Charge (Note 7)			0		1

All measurements were done with substrate connected to source.

Figure 1: Typical Output Characteristics at 25°C

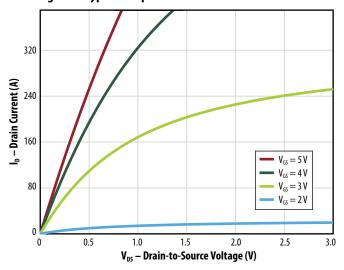


Figure 3: Typical $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

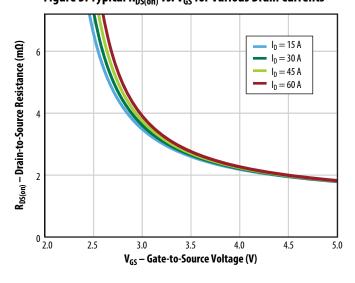
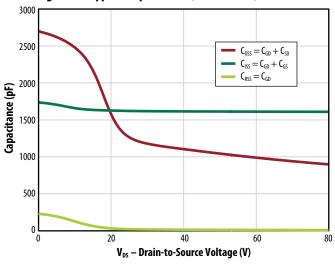



Figure 5a: Typical Capacitance (Linear Scale)

Figure 2: Typical Transfer Characteristics

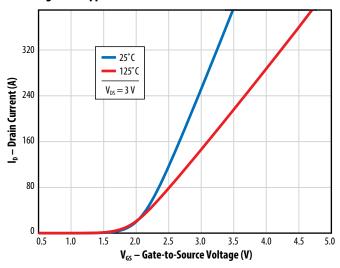


Figure 4: Typical R_{DS(on)} vs. V_{GS} for Various Temperatures

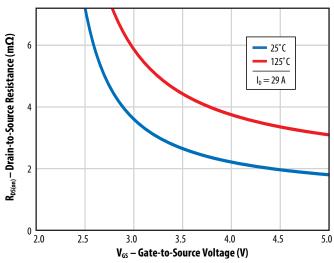
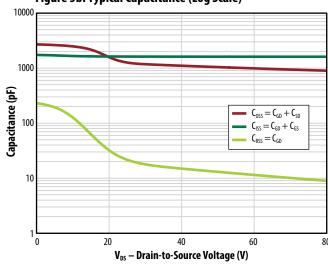



Figure 5b: Typical Capacitance (Log Scale)

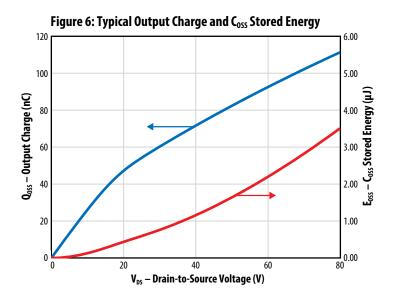
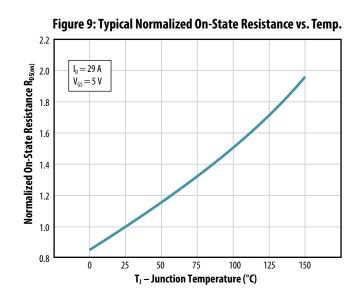
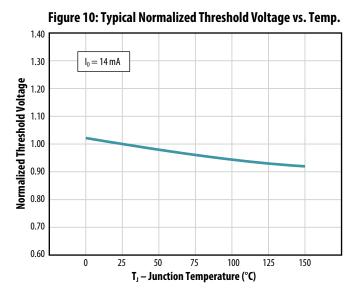
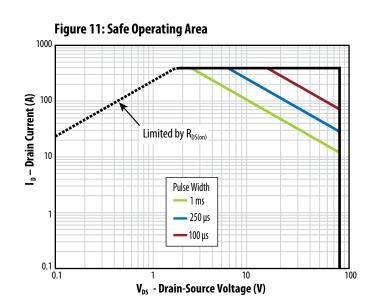


Figure 7: Typical Gate Charge

5


10 29 A


V_{DS} = 40 V


2

Q_G - Gate Charge (nC)

V_{SD} – Source-to-Drain Voltage (V)

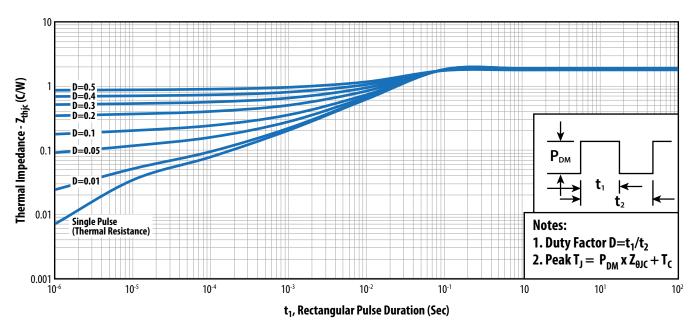
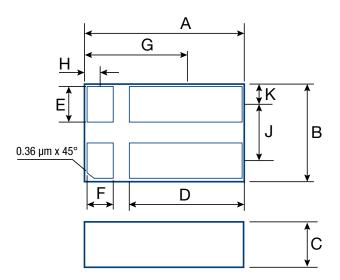
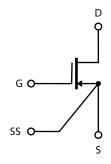



Figure 12: Thermal Impedance diagram


Package Outline and Dimensions

Symbol	Inches		Millimeters		Note
Oymbo.	MIN	MAX	MIN	MAX	11010
Α	0.311	0.321	7.90	8.15	
В	0.177	0.187	4.50	4.75	
С	0.078	0.088	1.98	2.24	
D	0.222	0.232	5.64	5.89	
E	0.065	0.075	1.65	1.91	
F	0.045	0.055	1.14	1.40	
G	0.195	0.205	4.95	5.21	
Н	0.025	0.035	0.64	0.89	
K	0.035	0.045	0.89	1.14	
J	0.095	0.105	2.41	2.67	

Standard Terminal Pad finish is a solder alloy of 63%Sn 37%Pb.

Package Connections

NOTE: SS pin is connected directly to source of internal die.

Notes

- Note 1. Never exceed the absolute maximum V_{DS} of the device otherwise permanent damage/destruction may result.
- Note 2. Never exceed the absolute maximum V_{GS} of the device otherwise permanent damage/destruction may result. We recommend a V_{GS} of 5 V for optimum operation across life and radiation.
- Note 3: R_{0,JA} measured with FSMD-D package mounted to double-sided PCB, 0.063" thickness with 1.0 square inches of copper area on the top (mounting side) and a flood etch (3 square inches) on the bottom side.
- Note 4. Measured using four wire (Kelvin) sensing and pulse measurement techniques. Measurement pulse width is 80 µs and duty cycle is 1%, maximum..
- Note 5. C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.
- Note 6. $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .
- Note 7. Guaranteed by design/device construction. Not tested.
- Note 8. The gate charge parameters are measured based on the MIL-STD-750.3471 Condition B. A high speed constant gate current (I_{const}) is provided to the Gate of the DUT during the time that the ground switch (G_S) is OFF (t_{off}). The DUT is switched ON and OFF using ground-sensed switch G_S . The gate current is adjusted to yield the desired charge per unit time (I_{const} · time per division) on the measuring oscilloscope. The G_S pulse drive ON time (I_{const}) is adjusted for the desired observability of the gate-source voltage (I_{const}) waveform. The maximum duty cycle of the ground switch (I_{const}) should be set to 1% maximum. Please note that all gate-related signals are referenced to the "Source Sense" pin on the package. At all times during the measurement, the maximum gate-source voltage is clamped to 5 I_{const} 0.

Disclaimers

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. EPC Space Corporation, its affiliates, agents, employees, and all persons acting on its or their behalf (collectively, "EPC Space"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. EPC Space makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose. To the maximum extent permitted by applicable law, EPC Space disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on EPC Space market knowledge of typical requirements that are often placed on similar technologies in generic applications. Product specifications do not expand or otherwise modify EPC Space terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, EPC Space products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the EPC Space product could result in personal injury or death. Customers using EPC Space products not expressly indicated for use in such applications do so at their own risk. Please contact authorized EPC Space personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of EPC Space. Product names and markings noted herein may be trademarks of their respective owners.

Export Classification: EAR 99

Patents

EPC Corporation and EPC Space hold numerous worldwide patents. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with local patent laws.

eGaN® is a registered trademark of Efficient Power Conversion Corporation, Inc. Data and specification subject to change without notice.

Information subject to change without notice.